Chern Characters for Topological Groups

Für äquivariante K-Theorie und Borelkonstruktion wird untersucht, inwieweit diese mit Ihrer Bredonhomologie übereinstimmen. Für proendliche und für halbeinfache p-adische Gruppen wird gezeigt, dass diese rational wirklich übereinstimmen. Der kohomologische Fall wird analog zum homologischen mitbehan...

Author: Meyer, Marcus
Further contributors: Lück, Wolfgang (Thesis advisor)
Division/Institute:FB 10: Mathematik und Informatik
Document types:Doctoral thesis
Media types:Text
Publication date:2006
Date of publication on miami:28.01.2007
Modification date:08.03.2016
Edition statement:[Electronic ed.]
Subjects:Chern-Charakter; K-Theorie; p-adische Gruppen; Borelkonstruktion; Baum-Connes-Vermutung
DDC Subject:510: Mathematik
License:InC 1.0
Language:English
Format:PDF document
URN:urn:nbn:de:hbz:6-79599662241
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-79599662241
Digital documents:diss_meyer.pdf

Für äquivariante K-Theorie und Borelkonstruktion wird untersucht, inwieweit diese mit Ihrer Bredonhomologie übereinstimmen. Für proendliche und für halbeinfache p-adische Gruppen wird gezeigt, dass diese rational wirklich übereinstimmen. Der kohomologische Fall wird analog zum homologischen mitbehandelt, allerdings tritt dort zusätzlich ein Hindernis auf. Ferner werden diese Konstruktion und einige vorher bekannte Konstruktionen miteinander verglichen.

We study to what extend the Borel construction and equivariant K-theory coincide with their Bredon homology. For profinite groups and for semisimple p-adic groups, we can show that they coincide rationally. The cohomological case can be studied analogously. However, additionally an obstruction comes into play. Furthermore, we compare this construction and several ones which were known before with each other. It turns out that those constructions coincide if they exist.