A Going-Down principle for ample groupoids and applications

Diese Arbeit beschäftigt sich mit einem sogenannten Going-Down Prinzip für total unzusammenhängende r-diskrete Gruppoide und seinen Anwendungen. Das Going-Down Prinzip für lokalkompakte Gruppen wurde von Chabert, Echterhoff und Oyono-Oyono entwickelt und erlaubt es gewisse Funktoren, die im Zusammen...

Author: Bönicke, Christian
Further contributors: Echterhoff, Siegfried (Thesis advisor)
Division/Institute:FB 10: Mathematik und Informatik
Document types:Doctoral thesis
Media types:Text
Publication date:2018
Date of publication on miami:17.08.2018
Modification date:17.08.2018
Edition statement:[Electronic ed.]
Subjects:C*-Algebren; r-diskrete Gruppoide; K-Theorie; Baum-Connes Vermutung; Künneth Formel C*-algebras; r-discrete groupoids; K-theory; Baum-Connes conjecture; Künneth formula
DDC Subject:510: Mathematik
License:InC 1.0
Language:English
Format:PDF document
URN:urn:nbn:de:hbz:6-17179636626
Permalink:http://nbn-resolving.de/urn:nbn:de:hbz:6-17179636626
Digital documents:diss_boenicke.pdf

Diese Arbeit beschäftigt sich mit einem sogenannten Going-Down Prinzip für total unzusammenhängende r-diskrete Gruppoide und seinen Anwendungen. Das Going-Down Prinzip für lokalkompakte Gruppen wurde von Chabert, Echterhoff und Oyono-Oyono entwickelt und erlaubt es gewisse Funktoren, die im Zusammenhang mit der topologischen K-theorie einer lokalkompakten Gruppe stehen, mithilfe ihrer Einschränkung auf kompakte Untergruppen zu studieren. In dieser Arbeit wird Le Galls äquivariante Version von Kasparovs bivarianter KK-Theorie verwendet, um dieses Prinzip auf die Klasse der total unzusammenhängenden r-diskreten Gruppoide auszudehnen. Darüberhinaus werden eine Reihe von Anwendungen dieses Prinzips präsentiert, die größtenteils im Zusammenhang zur Baum-Connes Vermutung für Gruppoide stehen.

We study a Going-Down (or restriction) principle for ample groupoids and its applications. The Going-Down principle for locally compact groups was developed by Chabert, Echterhoff and Oyono-Oyono and allows to study certain functors, that arise in the context of the topological K-theory of a locally compact group, in terms of their restrictions to compact subgroups. We extend this principle to the class of ample Hausdorff groupoids using Le Gall's groupoid equivariant version of Kasparov's bivariant KK-theory. Moreover, we provide a number of applications in connection with the Baum-Connes conjecture for ample groupoids.