The isomorphism problem for almost split Kac-Moody groups
Zerfallende Kac-Moody-Gruppen wurden 1987 von Jacques Tits definiert, Bertrand Remy gab 1999 eine Definition von fast-zerfallenden Kac-Moody-Gruppen an, die mittels Galois-Abstieg von zerfallenden Kac-Moody-Gruppen konstruiert werden können. In der vorliegenden Arbeit wird das Isomorphieproblem für...
Verfasser: | |
---|---|
Weitere Beteiligte: | |
FB/Einrichtung: | FB 10: Mathematik und Informatik |
Dokumenttypen: | Dissertation/Habilitation |
Medientypen: | Text |
Erscheinungsdatum: | 2010 |
Publikation in MIAMI: | 17.08.2010 |
Datum der letzten Änderung: | 09.05.2016 |
Angaben zur Ausgabe: | [Electronic ed.] |
Schlagwörter: | Kac-Moody-Gruppe; Galois-Abstieg; algebraische Gruppe; Gebäude; Isomorphismus |
Fachgebiet (DDC): | 510: Mathematik |
Lizenz: | InC 1.0 |
Sprache: | Englisch |
Format: | PDF-Dokument |
URN: | urn:nbn:de:hbz:6-86499481671 |
Permalink: | https://nbn-resolving.de/urn:nbn:de:hbz:6-86499481671 |
Onlinezugriff: | diss_hainke.pdf |
Zerfallende Kac-Moody-Gruppen wurden 1987 von Jacques Tits definiert, Bertrand Remy gab 1999 eine Definition von fast-zerfallenden Kac-Moody-Gruppen an, die mittels Galois-Abstieg von zerfallenden Kac-Moody-Gruppen konstruiert werden können. In der vorliegenden Arbeit wird das Isomorphieproblem für 2-sphärische fast-zerfallende Kac-Moody-Gruppen über Körpern der Charakteristik 0 gelöst. Wichtige Hilfsmittel dabei sind die Konstruktion von maximal zerfallenden Untergruppen und das detaillierte Studium von beschränkten Untergruppen. Die dabei erzielten Resultate verallgemeinern Ergebnisse von Armand Borel und Jacques Tits sowie Ergebnisse von Pierre-Emmanuel Caprace.