Fabrication and mechanical characterization of hydrogel-based 3D cell-like structures
In this article, we demonstrate the fabrication of 3D cell-like structures using a femtosecond laser-based two-photon polymerization technique. By employing poly(ethylene glycol) diacrylate monomers as a precursor solution, we fabricate 3D hemispheres that resemble morphological and biomechanical ch...
Verfasser: | |
---|---|
FB/Einrichtung: | FB 11: Physik |
Dokumenttypen: | Artikel |
Medientypen: | Text |
Erscheinungsdatum: | 2023 |
Publikation in MIAMI: | 18.01.2024 |
Datum der letzten Änderung: | 18.01.2024 |
Angaben zur Ausgabe: | [Electronic ed.] |
Quelle: | Optics Express 31 (2023) 18, 29174-29186 |
Schlagwörter: | Femtosecond lasers; Laser beams; Microstructures; Optical tweezers; Spatial resolution; Ultrafast lasers |
Fachgebiet (DDC): | 530: Physik |
Lizenz: | CC BY 4.0 |
Sprache: | Englisch |
Förderung: | Finanziert durch den Open-Access-Publikationsfonds der Universität Münster. Förderer: Deutsche Forschungsgemeinschaft / Projektnummer: 194347757 |
Format: | PDF-Dokument |
URN: | urn:nbn:de:hbz:6-67988464899 |
Weitere Identifikatoren: | DOI: 10.17879/87988402196 |
Permalink: | https://nbn-resolving.de/urn:nbn:de:hbz:6-67988464899 |
Verwandte Dokumente: |
|
Onlinezugriff: | 10.1364_OE.496888.pdf |
In this article, we demonstrate the fabrication of 3D cell-like structures using a femtosecond laser-based two-photon polymerization technique. By employing poly(ethylene glycol) diacrylate monomers as a precursor solution, we fabricate 3D hemispheres that resemble morphological and biomechanical characteristics of natural cells. We employ an optical tweezers-based microrheology technique to measure the viscoelastic properties of the precursor solutions inside and outside the structures. In addition, we demonstrate the interchangeability of the precursor solution within fabricated structures without impairing the microstructures. The combination of two-photon polymerization and microrheological measurements by optical tweezers demonstrated here represents a powerful toolbox for future investigations into cell mimic and artificial cell studies.