Fabrication and mechanical characterization of hydrogel-based 3D cell-like structures

In this article, we demonstrate the fabrication of 3D cell-like structures using a femtosecond laser-based two-photon polymerization technique. By employing poly(ethylene glycol) diacrylate monomers as a precursor solution, we fabricate 3D hemispheres that resemble morphological and biomechanical ch...

Verfasser: Kumar, Randhir
Dzikonski, Dustin
Bekker, Elena
Vornhusen, Robert
Vitali, Valerio
Imbrock, Jörg
Denz, Cornelia
FB/Einrichtung:FB 11: Physik
Dokumenttypen:Artikel
Medientypen:Text
Erscheinungsdatum:2023
Publikation in MIAMI:18.01.2024
Datum der letzten Änderung:18.01.2024
Angaben zur Ausgabe:[Electronic ed.]
Quelle:Optics Express 31 (2023) 18, 29174-29186
Schlagwörter:Femtosecond lasers; Laser beams; Microstructures; Optical tweezers; Spatial resolution; Ultrafast lasers
Fachgebiet (DDC):530: Physik
Lizenz:CC BY 4.0
Sprache:English
Förderung:Finanziert durch den Open-Access-Publikationsfonds der Universität Münster.
Förderer: Deutsche Forschungsgemeinschaft / Projektnummer: 194347757
Format:PDF-Dokument
URN:urn:nbn:de:hbz:6-67988464899
Weitere Identifikatoren:DOI: 10.17879/87988402196
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-67988464899
Verwandte Dokumente:
  • ist identisch zu:
  • Onlinezugriff:10.1364_OE.496888.pdf

    In this article, we demonstrate the fabrication of 3D cell-like structures using a femtosecond laser-based two-photon polymerization technique. By employing poly(ethylene glycol) diacrylate monomers as a precursor solution, we fabricate 3D hemispheres that resemble morphological and biomechanical characteristics of natural cells. We employ an optical tweezers-based microrheology technique to measure the viscoelastic properties of the precursor solutions inside and outside the structures. In addition, we demonstrate the interchangeability of the precursor solution within fabricated structures without impairing the microstructures. The combination of two-photon polymerization and microrheological measurements by optical tweezers demonstrated here represents a powerful toolbox for future investigations into cell mimic and artificial cell studies.