Preferential mobilisation of oxidised iron by slab-derived hydrous silicate melts

The role of slab-derived hydrous silicate melts in the transfer of the oxidised signature in subduction zones remains poorly constrained. We have investigated the mobility and redox state of iron in hydrous silicate melts by carrying out solubility measurements of hematite–magnetite assemblages in a...

Verfasser: Tiraboschi, C.
McCammon, C.
Rohrbach, Arno
Klemme, Stephan
Berndt, Jasper
Sanchez-Valle, Carmen
FB/Einrichtung:FB 14: Geowissenschaften
Dokumenttypen:Artikel
Medientypen:Text
Erscheinungsdatum:2023
Publikation in MIAMI:16.11.2023
Datum der letzten Änderung:16.11.2023
Angaben zur Ausgabe:[Electronic ed.]
Quelle:Geochemical Perspectives Letters 24 (2023), 43-47
Schlagwörter:subduction zones; hydrous melts; Fe-oxide solubility; oxygen fugacity; redox; Fe3+ transfer
Fachgebiet (DDC):560: Fossilien, Paläontologie
Lizenz:CC BY-NC-ND 4.0
Sprache:English
Förderung:Finanziert durch den Open-Access-Publikationsfonds der Universität Münster.
Förderer: Deutsche Forschungsgemeinschaft / Projektnummer: 432192355
Format:PDF-Dokument
URN:urn:nbn:de:hbz:6-08958519201
Weitere Identifikatoren:DOI: 10.17879/88958409152
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-08958519201
Verwandte Dokumente:
  • ist identisch zu:
  • Onlinezugriff:10.7185_geochemlet.2304.pdf

    The role of slab-derived hydrous silicate melts in the transfer of the oxidised signature in subduction zones remains poorly constrained. We have investigated the mobility and redox state of iron in hydrous silicate melts by carrying out solubility measurements of hematite–magnetite assemblages in a piston-cylinder apparatus combined with electron microprobe and Mössbauer analysis of the recovered glasses. The experiments were performed at subcritical conditions, i.e. two-fluid phases coexisting with the solid assemblage. We observe concentrations of total FeO as high as 1.85 ± 0.18 wt. % (2.07 ± 0.41 wt. % in saline systems) at 2 GPa and 900 °C, with Fe3+/Fetot ratios of 0.79 ± 0.04 (0.45 ± 0.07) that indicate the dominance of oxidised iron in the melt phase. Combined with thermodynamic modelling to reconstruct the composition and speciation of the coexisting fluid phase, we demonstrate that hydrous silicate melts can transport 20 times more dissolved iron, preferentially as oxidised iron, than aqueous fluids at sub-arc conditions. Our results support the efficient dissolution of 'fluid-insoluble' iron oxides in slab-melts, which are thus efficient agents for the transfer of oxidised iron to the mantle wedge, ultimately contributing to the oxidation of the arc magma source.