Local identification of nonlinear and non-Gaussian DSGE models

Diese Arbeit befasst sich mit der lokalen Identifikation von nicht-linearen und nicht-gaussianischen DSGE Modellen. Es werden Strategien entwickelt, um Probleme der Identifizierbarkeit zu erkennen und zu vermeiden. Dabei wird ein umfassender Überblick über vorhandene Methoden für linearisierte DSGE...

Author: Mutschler, Willi
Further contributors: Trede, Mark (Thesis advisor)
Division/Institute:FB 04: Wirtschaftswissenschaftliche Fakultät
Document types:Doctoral thesis
Media types:Text
Publication date:2016
Date of publication on miami:18.02.2016
Modification date:18.02.2016
Series:Wissenschaftliche Schriften der WWU Münster / Reihe IV, Bd. 10
Publisher: Monsenstein und Vannerdat
Edition statement:[Electronic ed.]
Subjects:Identifizierung; Pruning; Kumulanten; Polyspektren; Nicht-Gaussianität; Nicht-Linearität Identification; Pruning; Cumulants; Polyspectra; Non-Gaussian; Nonlinear
DDC Subject:330: Wirtschaft
License:CC BY-SA 3.0 DE
Language:English
Notes:Auch im Buchhandel erhältlich: Local identification of nonlinear and non-Gaussian DSGE models / Willi Mutschler. – Münster : Monsenstein und Vannerdat, 2016. – VII, 140 S. (Wissenschaftliche Schriften der WWU Münster : Reihe IV ; Bd. 10), ISBN 978-3-8405-0135-7, Preis: 13,60 EUR
Format:PDF document
ISBN:978-3-8405-0135-7
URN:urn:nbn:de:hbz:6-97219489383
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-97219489383
Digital documents:diss_mutschler_buchblock.pdf

Diese Arbeit befasst sich mit der lokalen Identifikation von nicht-linearen und nicht-gaussianischen DSGE Modellen. Es werden Strategien entwickelt, um Probleme der Identifizierbarkeit zu erkennen und zu vermeiden. Dabei wird ein umfassender Überblick über vorhandene Methoden für linearisierte DSGE Modelle gegeben und diese um Restriktionen durch höhere Momente, Kumulanten und Polyspektren erweitert. Weiterhin wird in der Arbeit die Identifizierung durch höhere Approximationen begründet. Mithilfe einer abgeschnittenen Zustandsraumdarstellung werden formale Rangkriterien für die lokale Identifizierbarkeit der Parameter von nicht-linearen und nicht-gaussianischen DSGE Modellen hergeleitet. Mit diesen Methoden lässt sich Identifizierbarkeit bereits vor der Schätzung des nicht-linearen Modells überprüfen. Auf diese Weise wird gezeigt, dass alle Parameter des Kim (2003) als auch des An und Schorfheide (2007) Modells mit einer Approximation zweiter Ordnung identifiziert werden können.

This thesis adds to the literature on the local identification of nonlinear and non-Gaussian DSGE models. It gives applied researchers a strategy to detect identification problems and means to avoid them in practice. A comprehensive review of existing methods for linearized DSGE models is provided and extended to include restrictions from higher-order moments, cumulants and polyspectra. Another approach, established in this thesis, is to consider higher-order approximations. Formal rank criteria for a local identification of the deep parameters of nonlinear or non-Gaussian DSGE models, using the pruned state-space system are derived. The procedures can be implemented prior to estimating the nonlinear model. In this way, the identifiability of the Kim (2003) and the An and Schorfheide (2007) model are demonstrated, when solved by a second-order approximation.