Equivariant correspondences and the Borel–Bott–Weil theorem

We prove an analog of the Borel–Bott–Weil theorem in equivariant KK-theory by constructing certain canonical equivariant correspondences between minimal flag varieties G/B, with G a complex semisimple Lie group.

Authors: Emerson, Heath
Yuncken, Robert
Document types:Article
Media types:Text
Publication date:2017
Date of publication on miami:01.03.2017
Modification date:27.01.2023
Source:Münster Journal of Mathematics, 10 (2017), S. 59-74
Publisher: Mathematisches Institut (Universität Münster)
Edition statement:[Electronic ed.]
DDC Subject:510: Mathematik
License:InC 1.0
Language:Englisch
Format:PDF document
URN:urn:nbn:de:hbz:6-33249452996
Other Identifiers:DOI: 10.17879/33249452641
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-33249452996
Digital documents:mjm_2017_10_59-74.pdf

We prove an analog of the Borel–Bott–Weil theorem in equivariant KK-theory by constructing certain canonical equivariant correspondences between minimal flag varieties G/B, with G a complex semisimple Lie group.