Equivariant correspondences and the Borel–Bott–Weil theorem
We prove an analog of the Borel–Bott–Weil theorem in equivariant KK-theory by constructing certain canonical equivariant correspondences between minimal flag varieties G/B, with G a complex semisimple Lie group.
Authors: | |
---|---|
Document types: | Article |
Media types: | Text |
Publication date: | 2017 |
Date of publication on miami: | 01.03.2017 |
Modification date: | 27.01.2023 |
Source: | Münster Journal of Mathematics, 10 (2017), S. 59-74 |
Publisher: |
Mathematisches Institut (Universität Münster)
|
Edition statement: | [Electronic ed.] |
DDC Subject: | 510: Mathematik |
License: | InC 1.0 |
Language: | Englisch |
Format: | PDF document |
URN: | urn:nbn:de:hbz:6-33249452996 |
Other Identifiers: | DOI: 10.17879/33249452641 |
Permalink: | https://nbn-resolving.de/urn:nbn:de:hbz:6-33249452996 |
Digital documents: | mjm_2017_10_59-74.pdf |
We prove an analog of the Borel–Bott–Weil theorem in equivariant KK-theory by constructing certain canonical equivariant correspondences between minimal flag varieties G/B, with G a complex semisimple Lie group.