Phylogenetic Analysis of Mitochondrial Outer Membrane b-Barrel Channels

Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VD...

Verfasser: Wojtkowska, Malgorzata
Jąkalski, Marcin
Pienkowska, Joanna R.
Stobienia, Olgierd
Karachitos, Andonis
Przytycka, Teresa M.
Weiner, January
Kmita, Hanna
Makałowski, Wojciech
FB/Einrichtung:FB 05: Medizinische Fakultät
FB 13: Biologie
Dokumenttypen:Artikel
Medientypen:Text
Erscheinungsdatum:2011
Publikation in MIAMI:24.02.2013
Datum der letzten Änderung:07.07.2021
Angaben zur Ausgabe:[Electronic ed.]
Quelle:Genome biology and Evolution Online 4 (2011) 2, 110-125
Schlagwörter:mitochondrial b-barrels; mitochondrial outer membrane; VDAC; Sam50/Tob55; Tom40; Acanthamoeba castellanii; Dictyostelium discoideum
Fachgebiet (DDC):570: Biowissenschaften; Biologie
Lizenz:CC BY-NC 3.0 DE
Sprache:Englisch
Anmerkungen:Finanziert durch den Open-Access-Publikationsfonds 2012/2013 der Deutschen Forschungsgemeinschaft (DFG) und der Westfälischen Wilhelms-Universität Münster (WWU Münster).
Format:PDF-Dokument
URN:urn:nbn:de:hbz:6-47379599206
Weitere Identifikatoren:DOI: 10.1093/gbe/evr130
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-47379599206
Onlinezugriff:110.full.pdf

Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have b-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these proteincoding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial b-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane b-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta.