Phylogenetic Analysis of Mitochondrial Outer Membrane b-Barrel Channels
Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VD...
Authors: | |
---|---|
Division/Institute: | FB 05: Medizinische Fakultät
FB 13: Biologie |
Document types: | Article |
Media types: | Text |
Publication date: | 2011 |
Date of publication on miami: | 24.02.2013 |
Modification date: | 07.07.2021 |
Edition statement: | [Electronic ed.] |
Source: | Genome biology and Evolution Online 4 (2011) 2, 110-125 |
Subjects: | mitochondrial b-barrels; mitochondrial outer membrane; VDAC; Sam50/Tob55; Tom40; Acanthamoeba castellanii; Dictyostelium discoideum |
DDC Subject: | 570: Biowissenschaften; Biologie |
License: | CC BY-NC 3.0 DE |
Language: | English |
Notes: | Finanziert durch den Open-Access-Publikationsfonds 2012/2013 der Deutschen Forschungsgemeinschaft (DFG) und der Westfälischen Wilhelms-Universität Münster (WWU Münster). |
Format: | PDF document |
URN: | urn:nbn:de:hbz:6-47379599206 |
Other Identifiers: | DOI: 10.1093/gbe/evr130 |
Permalink: | https://nbn-resolving.de/urn:nbn:de:hbz:6-47379599206 |
Digital documents: | 110.full.pdf |
Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have b-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these proteincoding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial b-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane b-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta.