Optical second-order skyrmionic hopfion

Due to their topological stability and spatial confinement, particle-like field configurations have gained significant interest in many areas of physics. Only recently, the first skyrmionic hopfion was proposed in light, but its higher-order analog in optics has stayed a theoretical construct so far...

Verfasser: Ehrmanntraut, Daniel
Droop, Ramon
Sugic, Danica
Otte, Eileen
Dennis, Mark R.
Denz, Cornelia
FB/Einrichtung:FB 11: Physik
Dokumenttypen:Artikel
Medientypen:Text
Erscheinungsdatum:2023
Publikation in MIAMI:10.01.2024
Datum der letzten Änderung:10.01.2024
Angaben zur Ausgabe:[Electronic ed.]
Quelle:Optica 10 (2023) 6, 725-731
Schlagwörter:Circular polarization; Free space optics; Liquid crystals; Optical vortices; Spatial light modulators; Structured light
Fachgebiet (DDC):530: Physik
Lizenz:CC BY 4.0
Sprache:English
Förderung:Finanziert durch den Open-Access-Publikationsfonds der Universität Münster.
Förderer: Deutsche Forschungsgemeinschaft / Projektnummer: 433682494
Förderer: Engineering and Physical Sciences Research Council / Projektnummer: EP/S02297X/1
Förderer: European Commission / Projektnummer: 721465
Förderer: Leverhulme Trust / Projektnummer: RP2013-K-009
Format:PDF-Dokument
URN:urn:nbn:de:hbz:6-47998641006
Weitere Identifikatoren:DOI: 10.17879/67998429390
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-47998641006
Verwandte Dokumente:
  • ist identisch zu:
  • Onlinezugriff:10.1364_OPTICA.487989.pdf

    Due to their topological stability and spatial confinement, particle-like field configurations have gained significant interest in many areas of physics. Only recently, the first skyrmionic hopfion was proposed in light, but its higher-order analog in optics has stayed a theoretical construct so far, and direct experimental observations also prove difficult in non-optical systems. Here we overcome this challenge by the experimental realization and analysis of a second-order skyrmionic hopfion in the polarization and phase texture of a paraxial light field in three-dimensional space. Thereby, we exemplify advanced control of observed parameters in a localized space, pioneering further experimental studies on higher-order hopfions in optics and beyond.