Shaping caustics into propagation-invariant light

Structured light has revolutionized optical particle manipulation, nano-scaled material processing, and high-resolution imaging. In particular, propagation-invariant light fields such as Bessel, Airy, or Mathieu beams show high robustness and have a self-healing nature. To generalize such beneficial...

Verfasser: Zannotti, Alessandro
Denz, Cornelia
Alonso, Miguel A.
Dennis, Mark R.
FB/Einrichtung:FB 11: Physik
Dokumenttypen:Artikel
Medientypen:Text
Erscheinungsdatum:2020
Publikation in MIAMI:14.04.2022
Datum der letzten Änderung:14.04.2022
Angaben zur Ausgabe:[Electronic ed.]
Quelle:Nature Communications 11 (2020), 3597, 1-7
Schlagwörter:Optical materials and structures; Optical physics
Fachgebiet (DDC):530: Physik
Lizenz:CC BY 4.0
Sprache:English
Förderung:Finanziert durch den Open-Access-Publikationsfonds der Westfälischen Wilhelms-Universität Münster (WWU Münster).
Format:PDF-Dokument
URN:urn:nbn:de:hbz:6-24039494337
Weitere Identifikatoren:DOI: 10.17879/44039509534
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-24039494337
Verwandte Dokumente:
  • ist identisch zu:
  • Onlinezugriff:10.1038_s41467-020-17439-3.pdf

    Structured light has revolutionized optical particle manipulation, nano-scaled material processing, and high-resolution imaging. In particular, propagation-invariant light fields such as Bessel, Airy, or Mathieu beams show high robustness and have a self-healing nature. To generalize such beneficial features, these light fields can be understood in terms of caustics. However, only simple caustics have found applications in material processing, optical trapping, or cell microscopy. Thus, these technologies would greatly benefit from methods to engineer arbitrary intensity shapes well beyond the standard families of caustics. We introduce a general approach to arbitrarily shape propagation-invariant beams by smart beam design based on caustics. We develop two complementary methods, and demonstrate various propagation-invariant beams experimentally, ranging from simple geometric shapes to complex image configurations such as words. Our approach generalizes caustic light from the currently known small subset to a complete set of tailored propagation-invariant caustics with intensities concentrated around any desired curve.