Exponential growth of systematic reviews assessing artificial intelligence studies in medicine: challenges and opportunities

The evidence-based medicine (EBM) movement is stepping up its efforts to assess medical artificial intelligence (AI) and data science studies. Since 2017, there has been a marked increase in the number of published systematic reviews that assess medical AI studies. Increasingly, data from observatio...

Verfasser: von Groote, Thilo Caspar
Ghoreishi, Narges
Björklund, Maria
Porschen, Christian
Puljak, Livia
Dokumenttypen:Artikel
Medientypen:Text
Erscheinungsdatum:2022
Publikation in MIAMI:04.09.2023
Datum der letzten Änderung:04.09.2023
Angaben zur Ausgabe:[Electronic ed.]
Quelle:Systematic Reviews 11 (2022) 132, 1-3
Schlagwörter:Artificial intelligence; Evidence-based medicine; Systematic reviews
Fachgebiet (DDC):610: Medizin und Gesundheit
Lizenz:CC BY 4.0
Sprache:Englisch
Förderung:Finanziert durch den Open-Access-Publikationsfonds der Westfälischen Wilhelms-Universität Münster (WWU Münster).
Format:PDF-Dokument
URN:urn:nbn:de:hbz:6-39928691146
Weitere Identifikatoren:DOI: 10.17879/99928548286
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-39928691146
Verwandte Dokumente:
  • ist identisch zu:
  • Onlinezugriff:10.1186_s13643-022-01984-7.pdf

    The evidence-based medicine (EBM) movement is stepping up its efforts to assess medical artificial intelligence (AI) and data science studies. Since 2017, there has been a marked increase in the number of published systematic reviews that assess medical AI studies. Increasingly, data from observational studies are used in systematic reviews of medical AI studies. Assessment of risk of bias is especially important in medical AI studies to detect possible “AI bias”.