Textures Induced by the Coesite-Stishovite Transition and Implications for the Visibility of the X-Discontinuity

The coesite-stishovite phase transition is considered the most plausible candidate to explain the X-discontinuity observed at around 300 km depth in a variety of tectonic settings. Here, we investigate the microstructure in SiO2 across the coesite-stishovite transition in uniaxial compression experi...

Verfasser: Krug, Matthias
Saki, Morvarid
Ledoux, Estelle
Gay, Jeffrey P.
Chantel, Julien
Pakhomova, Anna
Husband, Rachel
Rohrbach, Arno
Klemme, Stephan
Thomas, Christine
Merkel, Sébastien
Sanchez-Valle, Carmen
FB/Einrichtung:FB 14: Geowissenschaften
Dokumenttypen:Artikel
Medientypen:Text
Erscheinungsdatum:2022
Publikation in MIAMI:31.10.2023
Datum der letzten Änderung:31.10.2023
Angaben zur Ausgabe:[Electronic ed.]
Quelle:Geochemistry, Geophysics, Geosystems 23 (2022) 10, e2022GC010544, 1-14
Schlagwörter:coesite-stishovite transition; microstructures; multigrain crystallography; X-discontinuity; reflection coefficients; mantle heterogeneities
Fachgebiet (DDC):550: Geowissenschaften, Geologie
Lizenz:CC BY 4.0
Sprache:English
Förderung:Finanziert über die DEAL-Vereinbarung mit Wiley 2019-2022.
Förderer: Deutsche Forschungsgemeinschaft / Projektnummer: 390989765
Förderer: Agence Nationale de la Recherche / Projektnummer: ANR-17-CE31-0025
Förderer: European Commission / Projektnummer: 730872
Förderer: German Academic Exchange Service / Projektnummer: PHC40555PC
Format:PDF-Dokument
URN:urn:nbn:de:hbz:6-68968629816
Weitere Identifikatoren:DOI: 10.17879/18978548921
Permalink:https://nbn-resolving.de/urn:nbn:de:hbz:6-68968629816
Verwandte Dokumente:
  • ist identisch zu:
  • Onlinezugriff:10.1029_2022GC010544.pdf

    The coesite-stishovite phase transition is considered the most plausible candidate to explain the X-discontinuity observed at around 300 km depth in a variety of tectonic settings. Here, we investigate the microstructure in SiO2 across the coesite-stishovite transition in uniaxial compression experiments. We apply the multigrain crystallography technique (MGC) in a laser-heated diamond-anvil cell (LH-DAC) to identify the seismic signature of the transition and the amount of SiO2 in the mantle. While coesite displays weak lattice-preferred orientations (LPO) before the transition, stishovite develops strong LPO characterized by the alignment of [112] axes parallel to the compression direction. However, LPO has little effect on the impedance contrast across the transition, which is up to 8.8% for S-waves in a mid-ocean ridge basalt (MORB) composition at 300 km depth along a normal mantle geotherm, 10 GPa-1700 K. Therefore, 10–50 vol.% of a MORB component, corresponding to 0.6–3.2 vol.% SiO2, mechanically mixed with the pyrolytic mantle would be required to explain the range of impedance (and velocity) contrasts observed for the X-discontinuity. Based on the reflection coefficients computed for the coesite-stishovite transition, we show that the incidence angle or epicentral distance is critical for the detection of silica-containing lithologies in the upper mantle, with highest detection probabilities for small incidence angles. The intermittent visibility of the X-discontinuity may thus be explained by the seismic detectability of the coesite-stishovite transition rather than by absence of the transition or chemical heterogeneities in some specific tectonic settings.