Formale Axiome als Attribute : Folgerungen aus einer unbeachteten Hilbert-These
In Reaktion auf die Grundlagenkrise entwickelte D. Hilbert neben der „inhaltlichen“ eine „formale“ Axiomatik. „Formale Axiome“ sind danach rein syntaktische „Formeln“. Erst eine Interpretation auf ein „Modell“ stellt einen Weltbezug her. Nach einer Kritik dieser Lösung stellen wir eine andere vor. D...
Author: | |
---|---|
Document types: | Article |
Media types: | Text |
Publication date: | 2007 |
Date of publication on miami: | 24.01.2007 |
Modification date: | 22.03.2023 |
Edition statement: | [Electronic ed.] |
Subjects: | Grundlagenkrise; formales Axiomensystem; Attribution; Relationseigenschaft; Struktur; Widerspruchsfreiheit; Vollständigkeit; formale Beweise |
DDC Subject: | 100: Philosophie
510: Mathematik |
License: | InC 1.0 |
Language: | German |
Format: | PDF document |
URN: | urn:nbn:de:hbz:6-10609661945 |
Permalink: | https://nbn-resolving.de/urn:nbn:de:hbz:6-10609661945 |
Digital documents: | formale_axiome_als_attribute_I_07.pdf |
LEADER | 02616cam a2200301uu 4500 | ||
---|---|---|---|
001 | be903962-844e-491a-8bd0-fcd4a26ae079 | ||
003 | miami | ||
005 | 20230322 | ||
007 | c||||||||||||a| | ||
008 | 070124e20070124||||||||||#s||||||||ger|||||| | ||
024 | 7 | |a urn:nbn:de:hbz:6-10609661945 |2 urn | |
041 | |a ger | ||
082 | 0 | |a 510 Mathematik |2 23 |a 100 Philosophie |2 23 | |
100 | 1 | |a Hohelüchter, Martin |4 aut | |
110 | 2 | |a Universitäts- und Landesbibliothek Münster |0 http://d-nb.info/gnd/5091030-9 |4 own | |
245 | 1 | 0 | |a Formale Axiome als Attribute |b Folgerungen aus einer unbeachteten Hilbert-These |
250 | |a [Electronic ed.] | ||
264 | 1 | |c 2007 | |
264 | 2 | |b Universitäts- und Landesbibliothek Münster |c 2007-01-24 | |
300 | |a 36 | ||
506 | 0 | |a free access | |
520 | 3 | |a In Reaktion auf die Grundlagenkrise entwickelte D. Hilbert neben der „inhaltlichen“ eine „formale“ Axiomatik. „Formale Axiome“ sind danach rein syntaktische „Formeln“. Erst eine Interpretation auf ein „Modell“ stellt einen Weltbezug her. Nach einer Kritik dieser Lösung stellen wir eine andere vor. Danach sind formale Axiome nicht Formeln, sondern Attribute: Inhaltliche Axiome der Mathematik sind singuläre Urteile über Relationen, formale Axiome die Attribute solcher Urteile, d.h. Relationsattribute. Die Formalisierung bezieht sich nicht auf Interpretation, sondern auf Attribution. So ist die Attributionstheorie auf Axiome anzuwenden und damit ein Kriterium für inhaltliche und formale Axiome zu gewinnen und die Widerspruchsfreiheit von Axiomensystemen auf die Kontrarietät von Attributen zurückzuführen. Inhalt der Mathematik sind nicht Formeln und deren Interpretation, sondern deren Voraussetzung, die Relationseigenschaften, die eine strukturerhaltende Interpretation ermöglichen. Die inhaltliche Mathematik untersucht die Strukturen einzelner Relationen und übergeht deren (gegenständliche) Argumente; die formale Mathematik untersucht den Aufbau und das Verhältnis der Strukturen und übergeht die sie tragenden Relationen. | |
540 | |a InC 1.0 |u https://rightsstatements.org/vocab/InC/1.0/ | ||
653 | 0 | |a Grundlagenkrise |a formales Axiomensystem |a Attribution |a Relationseigenschaft |a Struktur |a Widerspruchsfreiheit |a Vollständigkeit |a formale Beweise | |
655 | 7 | |2 DRIVER Types |a Artikel | |
655 | 7 | |2 DCMI Types |a Text | |
856 | 4 | 0 | |3 Zum Volltext |q text/html |u https://nbn-resolving.de/urn:nbn:de:hbz:6-10609661945 |u urn:nbn:de:hbz:6-10609661945 |
856 | 4 | 0 | |3 Zum Volltext |q application/pdf |u https://repositorium.uni-muenster.de/document/miami/be903962-844e-491a-8bd0-fcd4a26ae079/formale_axiome_als_attribute_I_07.pdf |