Boundary strata of nonnegatively curved Alexandrov spaces and a splitting theorem
Das Hauptresultat ist der folgende metrische Spaltungssatz: Gegeben sei ein kompakter Alexandrovraum M mit nichtnegativer Krümmung, dessen Rand mehrere Randstrata enthält mit leerem gemeinsamen Schnitt. Dann ist M isometrisch zu einem Produkt von Alexandrovräumen S und D mit nichtnegativer Krümmung....
Author: | |
---|---|
Further contributors: | |
Division/Institute: | FB 10: Mathematik und Informatik |
Document types: | Doctoral thesis |
Media types: | Text |
Publication date: | 2010 |
Date of publication on miami: | 20.07.2010 |
Modification date: | 09.05.2016 |
Edition statement: | [Electronic ed.] |
Subjects: | Metrische Geometrie; Alexandrovraum; nichtnegative Krümmung; Spaltungssatz; Strata |
DDC Subject: | 510: Mathematik |
License: | InC 1.0 |
Language: | Englisch |
Format: | PDF document |
URN: | urn:nbn:de:hbz:6-67429603642 |
Permalink: | https://nbn-resolving.de/urn:nbn:de:hbz:6-67429603642 |
Digital documents: | diss_woerner.pdf |
Das Hauptresultat ist der folgende metrische Spaltungssatz: Gegeben sei ein kompakter Alexandrovraum M mit nichtnegativer Krümmung, dessen Rand mehrere Randstrata enthält mit leerem gemeinsamen Schnitt. Dann ist M isometrisch zu einem Produkt von Alexandrovräumen S und D mit nichtnegativer Krümmung. Hierbei ist ein Randstratum definiert als eine extremale Teilmenge von M der lokal konstanten Kodimension 1. Sind davon etwa k+1 derart gewählt, dass ihr gemeinsamer Schnitt leer ist, jeder k-fache Schnitt jedoch nichtleer, so ist der Faktor S von oben isometrisch zu jedem dieser k-fachen Schnitte und hat insbesondere die Dimension dim M - k. Sind weitere Randstrata in M vorhanden, induzieren sie Randstrata von S. Iterative Anwendung des Spaltungssatzes ergibt als Korollar, dass ein n-dimensionaler Alexandrovraum mit nichtnegativer Krümmung höchstens 2n Randstrata besitzt und Gleichheit genau für einen Euklidischen Quader gilt.