Zahlen als Begriffe : Eine Revision der Fregeschen Zahlendefinition

Frege fasst Anzahlen als Gegenstände und nur als Gegenstände auf und definiert sie als Klassen. Dabei setzt er unzulässigerweise voraus, dass Klassen Einheiten seien. Wir definieren dagegen Anzahlen als Begriffe, behalten aber seine auf die Äquivalenzrelation der Gleichzahligkeit gegründeten Definit...

Author: Hohelüchter, Martin
Division/Institute:Einrichtungen außerhalb der WWU
Document types:Article
Media types:Text
Publication date:2008
Date of publication on miami:22.04.2008
Modification date:08.06.2016
Edition statement:[Electronic ed.]
Subjects:Gleichzahligkeit; Klasse; Anzahl und Zahl; unendliche Anzahl; Teilmengensatz.
DDC Subject:510: Mathematik
License:InC 1.0
Language:German
Format:PDF document
URN:urn:nbn:de:hbz:6-65549503956
Permalink:http://nbn-resolving.de/urn:nbn:de:hbz:6-65549503956
Digital documents:zahlen_als_begriffe.pdf

Frege fasst Anzahlen als Gegenstände und nur als Gegenstände auf und definiert sie als Klassen. Dabei setzt er unzulässigerweise voraus, dass Klassen Einheiten seien. Wir definieren dagegen Anzahlen als Begriffe, behalten aber seine auf die Äquivalenzrelation der Gleichzahligkeit gegründeten Definitionsweise bei. Diese revidierte Definition stützt sich daher auf eine Theorie der Begriffe statt auf eine der Klassen. Die Anzahlen treten dann als Attribute (niederer Stufe) und als Gegenstände (zu Attributen höherer Stufe) auf. Dies hat keine Folgen für die Definition abzählbarer, wohl aber für die überabzählbarer Anzahlen. So ist z.B. der Cantorsche Teilmengensatz zwar gültig, aber nicht iterierbar und daher untauglich für die Generierung beliebig großer überabzählbarer Zahlen.