Equivariant homology theories for totally disconnected groups

Der Begriff der äquivarianten Familie von Spektren steht in Korrespondenz zu dem der äquivarianten Homologietheorie, wie er von W. Lück benutzt wird. Wir entwickeln ein allgemeines Prinzip, um äquivariante Familien von Spektren zu konstruieren. Diese Maschine kann dazu benutzt werden, viele interess...

Author: Sauer, Juliane
Further contributors: Lück, Wolfgang (Thesis advisor)
Division/Institute:FB 10: Mathematik und Informatik
Document types:Doctoral thesis
Media types:Text
Publication date:2002
Date of publication on miami:12.12.2002
Modification date:14.12.2015
Edition statement:[Electronic ed.]
Subjects:Equivariant homology theory; Spaces and spectra over a category; Chern character; Algebraic K- and L-theory; Hochschild homology; Topological K-Theory
DDC Subject:510: Mathematik
License:InC 1.0
Language:English
Format:PDF document
URN:urn:nbn:de:hbz:6-85659550053
Permalink:http://nbn-resolving.de/urn:nbn:de:hbz:6-85659550053
Digital documents:sauer.pdf

Der Begriff der äquivarianten Familie von Spektren steht in Korrespondenz zu dem der äquivarianten Homologietheorie, wie er von W. Lück benutzt wird. Wir entwickeln ein allgemeines Prinzip, um äquivariante Familien von Spektren zu konstruieren. Diese Maschine kann dazu benutzt werden, viele interessante Beispiele zu definieren. Die Hauptbeispiele sind algebraische K- und L-Theorie für diskrete Gruppen, topologische K-Theorie, Hochschild Homologie, Zyklische Homologie und Periodische Homologie für total unzusammenhängende, lokalkompakte Gruppen. Im Anhang betrachten wir äquivariante K-Theorie (Kohomologie) für propere Aktionen total unzusammenhängender Gruppen. Wir zeigen, dass diese im allgemeinen nicht, wie für diskrete Gruppen, mit Hilfe von endlich-dimensionalen äquivarianten Vektorraumbündeln definiert werden können, weil Ausschneidung nicht erfüllt ist.