On coset posets, nerve complexes and subgroup graphs of finitely generated groups

Der Coset Poset ist die Menge aller Rechtsnebenklassen aller echten Untergruppen zusammen mit der Teilmengenordnung. Der Finite Index Coset Poset ist eine Teilmenge des Coset Poset und enthält nur die Nebenklassen der echten Untergruppen von endlichem Index. Wir beweisen, dass der finite index Coset...

Author: Welsch, Cora
Further contributors: Kramer, Linus (Thesis advisor)
Division/Institute:FB 10: Mathematik und Informatik
Document types:Doctoral thesis
Media types:Text
Publication date:2018
Date of publication on miami:05.07.2018
Modification date:05.07.2018
Edition statement:[Electronic ed.]
Subjects:Coset Poset; Untergruppen Graph; Nebenklassen; Simplizialkomplex; Nervkomplex; Zusammenziehbarkeit
DDC Subject:510: Mathematik
License:InC 1.0
Language:English
Format:PDF document
URN:urn:nbn:de:hbz:6-48119612426
Permalink:http://nbn-resolving.de/urn:nbn:de:hbz:6-48119612426
Digital documents:diss_welsch.pdf

Der Coset Poset ist die Menge aller Rechtsnebenklassen aller echten Untergruppen zusammen mit der Teilmengenordnung. Der Finite Index Coset Poset ist eine Teilmenge des Coset Poset und enthält nur die Nebenklassen der echten Untergruppen von endlichem Index. Wir beweisen, dass der finite index Coset poset sowie der Coset Poset und dazugehörige Nervkomplexe für manche endlich erzeugten Gruppen zusammenziehbar ist und für andere nicht. Darüberhinaus zeigen wir, dass es endlich erzeugte Gruppen gibt für die der Coset Poset und der Finite Index Coset Poset nicht homotopieäquivalent sind. Um die Zusammenziehbarkeit der Simplizialkomplexe zu beweisen verwenden wir Untergruppen Graphen.