Erweiterte Suche

Generalized affine buildings

automorphisms, affine Suzuki-Ree buildings and convexity

Gebäude wurden in den 1950er und 1960er Jahren von Tits entwickelt und finden bis heute Anwendungen in vielen Bereichen der Mathematik. Bennett verallgemeinerte in den 80er Jahren Tits' Definition nicht-diskreter affiner Gebäude zu Gebäuden, die über einer angeordneten abelschen Gruppe $\Lambda$ modelliert sind. Diese allgemeine Klasse wird in der vorliegenden Arbeit untersucht. Neben dem Beweis struktureller Ergebnisse, wie zum Beispiel eines Erweiterungssatzes für ökologische Isomorphismen des Randes, enthält meine Arbeit den Beweis zweier Übertragungen des Kostantschen Konvexitätssatzes auf affine Gebäude. Der Beweis im simplizialen Fall beruht auf einer Charakterformel für Höchstgewichtsdarstellungen algebraischer Gruppen beziehungsweise im nicht-diskreten Fall auf Methoden der metrischen Geometrie. Weiter wird, mit algebraischen Methoden, die Existenz (notwendigerweise) nicht-diskreter affiner Gebäude mit Suzuki-Ree-Gebäude im Unendlichen bewiesen.

Titel: Generalized affine buildings
Untertitel: automorphisms, affine Suzuki-Ree buildings and convexity
Verfasser: Hitzelberger, Petra GND
Gutachter: Kramer, Linus GND
Organisation: FB 10: Mathematik und Informatik
Dokumenttyp: Dissertation/Habilitation
Medientyp: Text
Erscheinungsdatum: 2008
Publikation in MIAMI: 08.02.2009
Datum der letzten Änderung: 22.04.2016
Schlagwörter: affine Gebäude; Konvexität; Suzuki-Ree; metrische Räume; BN-Paare; ökologische Isomorphismen
Fachgebiete: Mathematik
Sprache: Englisch
Format: PDF-Dokument
URN: urn:nbn:de:hbz:6-42559598421
Permalink: https://nbn-resolving.org/urn:nbn:de:hbz:6-42559598421
Onlinezugriff: